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1.  INTRODUCTION 
 
 Because of the great economic importance of 
agriculture, it is favorable to recognize the degree of 
uncertainty regarding the season's harvest and to plan 
accordingly.  The opportunity to benefit increases as 
lead-time of reliable information or prediction increases 
and the range of uncerainty narrows.  Consequently, 
much work has been done to forecast crop yield.  
Walker (1989) reviewed the two main techniques of crop 
modeling, the simulation approach and the regression 
approach.  Studies done with simulation models (e.g., 
Duchon 1986) require numerous details about crop 
management and environment.  For yield estimation 
over a large area, the regression approach has been 
more widely used (Walker 1989).  Because of the 
importance of moisture to crops and the harmfulness of 
limited moisture, it is natural to relate crop yield to the 
occurrence and severity of drought, which is usually 
expressed in terms of an index.  Taylor (personal 
communication 2002) expains, "In order for index data 
to be a useful indicator for risk assessment, it must be 
simply derived and indicative of a result.  The index 
concept is not intended to be rigorously predictive, but is 
expected to provide reliable assessment of risk and 
detection of risk change."  Byun and Wilhite (1999) 
provide a summary of some drought indexes to preface 
their discussion of the advantages and disadvantages of 
the indexes: 

Most drought indexes are based on 
meteorological or hydrological variables.  
They include the Palmer Drought Severity 
Index (PDSI; Palmer 1965), Rainfall Anomaly 
Index (RAI; van Rooy 1965), deciles (Gibbs 
and Maher 1967), Crop Moisture Index (CMI; 
Palmer 1968), Bhalme and Mooly Drought 
Index (BMDI; Bhalme and Mooly 1980), 
Surface Water Supply Index (SWSI; Shafer 
and Dezman 1982), National Rainfall Index 
(RI; Gommes and Petrassi 1994), 
Standardized Precipitation Index (SPI; McKee 
et al. 1993, 1995), and Reclamation Drought 
Index (RDI; Weghorst 1996).  The Soil 
Moisture Drought Index (SMDI; Hollinger et al. 
1993) and Crop-Specific Drought Index 
(CSDI; Meyer et al. 1993; Meyer and Hubbard 
1995) appeared after CMI. ... Of all the 
indexes, the PDSI is still the most widely used 
and recognized index on an operational basis 
(Byun and Wilhite 1999).  
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The popularity of the PDSI and CMI promotes uses, 
such as crop assessment, for which they were not 
intended (Meyer et al. 1993a), and in some situations 
prove to be quite unreliable (Meyer et al. 1991). 
 The following work provides the basis for 
applying the adapted aridity index described in this 
study to a sub-state level; namely climate/crop districts 
in several Midwest states.   A monthly drought index 
computed by Walker (1989) is an example of an index 
perhaps better suited for regressions related to wheat 
yield. Walker (1989) observed a highly correlated 
relationship between the historical drought index and 
Canadian wheat yield, which he used to forecast 1987 
Canadian wheat yield with the frequently updated 
drought index.  As a step in separating the influence of 
weather from the influence of technology, Thompson 
(1986) presented a crop-weather model that related 
corn yield to preseason precipitation (September 
through June), June temperature, July precipitation, July 
temperature, August precipitation, and August 
temperature.  Stephens et al. (1994) plotted a monthly 
weighted rain index against Australian district wheat 
yield. Because they were interested in wheat yield for all 
of Australia, they weighted each station's monthly rain 
according to the contribution percentage of the district to 
the total Australian wheat crop.  Stephens et al. (1994) 
weighted the monthly rain according to its importance 
for the crop and made adjustments for soil moisture in 
drought or flooding situations.  The index had a strong 
relationship to the average Australian wheat yield and 
Stephens et al. (1994) indicated that if the seasonal 
rainfall could be predicted accurately (such as with the 
Southern Oscillation), wheat yield assessment would be 
improved.  Harouna and Carlson (1994) presented a 
monthly aridity index and evaluated Iowa corn and 
soybean trend adjusted yield against both July and 
August index values.  Except for August, corn yields had 
the highest correlation to the aridity index when 
compared against July and August heat stress (Carlson 
1990) and against July and August soil moisture levels 
(Shaw 1983).  Harouna and Carlson (1994) suspected 
the correlation differences between the months were 
related to the crops’ needs for varying amounts of water 
for each stage of development.   
 Harouna and Carlson's (1994) suspicions 
agree with Jensen (1968) and Nairizi and Rydzewski 
(1977) who showed that, for each crop growth stage, 
there are various yield responses to soil moisture stress.  
Indeed, this concept was reflected in Stephens' et al. 
(1994) weighting of monthly rain for Australian wheat 
and in Thompson's (1986) coefficients on the monthly 
precipitation terms in his model.  Walker's (1989) area 
weighted drought index was also computed by summing 



the growth as a function of atmospheric demand and 
crop phenology. 
 Crop development, at some points in the life 
cycle, can advance to the next stage in just several 
days, so a monthly time scale can smooth the 
importance of the variable or split a growth stage into 
two pieces.  A smaller time scale is likely to be better 
suited when dealing with crop growth and yield.  Shaw 
(1983) applied weighting factors in 5-day groups on his 
daily stress index (SI).   Shaw (1983) defined the stress 
index such that if corn transpired all the water it needed 
to maintain optimal growth, and if availability of moisture 
was sufficient, there was zero stress.  The stress values 
become different from zero as the ratio of corn’s actual 
evapotranspiration to the potential amount needed for 
maximizing production becomes different from 100 
percent.  When developing their crop-specific drought 
index (CSDI), Meyer et al. (1993a) recognized that crop 
development timing has to be considered when relating 
yield to drought or stress.  The CSDI is also designated 
as a ratio of actual evapotranspiration to potential 
evapotranspiration, but crop development timing was 
incorporated by taking the evapotranspiration ratio to 
the power of a crop stage coefficient (Meyer et al. 
1993a).  Both authors reported satisfactory results with 
their respective indexes.   
 The yield prediction method by Shaw (1983) 
works well for Iowa and is founded on solid physical 
principles.  However, the actual and potential 
evapotranspiration used in the stress index are 
calculated with measurements of precipitation, pan 
evaporation, and estimation of crop stage.  Therefore, a 
problem with the method arises because the pan 
evaporation network density, maintained by the National 
Climatic Data Center (NCDC) and disseminated through 
NOAA (National Oceanic and Atmospheric 
Administration) National Data Center Climate Data 
Online (NNDC-CDO) (http://cdo.ncdc.noaa.gov/) is not 
very great across the Midwest.  For the existing 
locations, it is possible to assume the pan evaporation 
at a single station may be representative of its district.  
However, at least one district in each state for the 2000 
and 2001 seasons did not encompass a pan 
evaporation station, and thus is not conducive for 
consistent yield predictions across the many Midwest 
districts.  Indeed, there were 8 stations lost and only 2 
gained from 2000 to 2001.   

The yield prediction method by Meyer et al. 
(1993a) also works well over a range of climate 
conditions and geographical locations, but complete 
data acquisition here is also a potential problem.  To 
compute the potential evapotranspiration for the CSDI, 
the following daily station data are needed, which were 
assumed to be representative of a crop reporting district 
(CRD), net radiation, wind, minimum temperature, 
maximum temperature, and 24-h averaged dew point 
(Meyer et al. 1993a).  The actual evapotranspiration 
calculation in the CSDI needs daily precipitation from 
several stations and soil water data (Meyer et al. 
1993a).  Meyer et al. (1993a) used growing degree days 
to indicate when to use the next crop stage coefficient.   
It was thought that net radiation and soil water data 

would be troublesome to collect in near real-time and 
the CSDI would be slightly cumbersome to maintain.  
Because the evaluation of actual and potential 
evapotranspiration is not straightforward and is not easy 
to assess in near real-time, an alternate method is 
explored in the rest of this study.  
 With deference to Shaw’s (1983) stress index, 
air temperature plays a large role in evaporation from 
plants, and precipitation is a major factor for the 
availability of moisture, so it was thought that they alone 
could also be used in determining the amount of yield a 
corn crop will produce.  In a general sense, an average 
amount of precipitation during the growing season 
(assuming a sufficient initial soil water profile) will 
provide sufficient moisture for an average corn crop.  
However, drier and warmer than usual (i.e., arid) 
conditions will stress the corn crop, which according to 
Shaw’s (1983) stress yield relationship will result in a 
lower yield.  Carlson et al. (1996) used the aridity index 
from Harouna and Carlson (1994) to confirm that 
conditions were usually wet and cool, which is favorable 
for corn (Thompson 1988), when the smooth running 
average of the Southern Oscillation index was less than 
-0.8 (El Niño) during the summer.  The aridity index by 
Harouna and Carlson (1994), which uses precipitation 
and maximum temperature data (that were readily 
available from a particular source on a nearly daily basis 
in 2001 and 2002), fits well with the concept of crop 
yield deviating from trend when the weather deviates 
from average.  Its ability to predict corn yield was tested 
below. 
 The adaptation of the aridity index made use of 
some concepts from Shaw’s (1983) corn yield prediction 
program which was based on soil moisture and crop 
moisture stress.  As discussed above, stress does not 
have a constant influence on the yield during the crop 
life cycle.  In order to resolve the corn phenology, 
Harouna and Carlson’s (1994) aridity index was reduced 
to a weekly time scale.  
 
 
 
2.  METHODOLOGY AND DATA 
 
2.1  Definition of the Aridity Index (AI) 
 
 Harouna and Carlson (1994) used monthly 
precipitation's normalized departure from average, a 
technique discussed by Barring and Hulme (1991), and 
subtracted it from the monthly maximum temperature's 
normalized departure from average, applied in the same 
manner, to calculate an aridity index.  Such a definition 
corresponded to positive values for warmer and drier 
than average conditions, which tend to have a negative 
effect on corn yield. Although the term “aridity” becomes 
a misnomer, the index from Harouna and Carlson 
(1994) was modified (Equation 2.1) so it is the weekly 
maximum temperature’s normalized departure from 
average (Equation 2.2) subtracted from the weekly 
precipitation’s normalized departure from average 
(Equation 2.3).   
 



The index of aridity for each climate week (i) and year (j) 
is given by (climate week 1 begins March 1 for any 
given year):  
 
                         AIij = Pʹ′ij – Tʹ′ij             (2.1) 
where 

                                     (2.2)                                      (2.3) 
Tʹ′ij (Pʹ′ij) is the standardized weekly average maximum 
temperature (total precipitation) for week i and year j. 

                  is the weekly average maximum temperature 

 

Tij  (Pij)    is the weekly average maximum temperature 
(total precipitation) for week i and year j. 
Sti (Spi) is the standard deviation of the average 
maximum temperature (total precipitation) over all years 
for week i. 
 
The index equally weights the contribution of 
temperature and precipitation and generally gives 
negative (positive) values when the weather is warm 
and dry (cool and wet).  This definition has the 
accumulation of weighted negative weekly AI values 
(discussed later) correspond to low yield.  This results in 
a slope that generally appears positive when yield 
deviations (clarified later) are plotted against the 
weighted weekly AI seasonal sum, and allows users to 
associate AI less than zero with a decreased chance of 
good yield. 

Shaw (1983) dealt with the yield’s response to 
the timing of stress by implementing a weighting 
scheme.  Since silking time for corn is the most 
sensitive to stress, Shaw (1983) accordingly weighted 
stress during silking the most heavily and reduced the 
weight as the time (in 5-day periods) before and after 
silking increased.  Shaw’s (1983) yield prediction 
method starts with an initial potential yield and subtracts 
from it as stress accumulates.  Thus, yield loss can be 
assessed during the season by noting the sum of stress 
values at the particular time.  At the end of the season, 
the summed stress values give a seasonal stress index.  
These concepts, weighting for phenology and summing 
the index throughout the season, were incorporated 
here with the weekly AI.   

A seasonal AI-yield relationship is different 
from a seasonal stress-yield relationship because, 
instead of starting with a potential yield and subtracting 
for stress, the AI method starts with a predicted yield 
extrapolated using trend line yield.  The initial yield 
prediction deviates as the weekly AI sum deviates from 
zero. The weights applied to each week’s AI were 
adopted from Shaw (1983) assuming the critical times 
for temperature and precipitation deviation from average 
are approximately the same as the critical times for 
stress.  The seasonal progression of “weighted weekly 

AI” (AIn) for weeks i = 11, 12, ..., 27 used for public 
information is computed by:  

                         AIn = i
n

i
iAIk∑

=11
                                     (2.4)                        

 
where ki is the factor used to adjust for crop phenology 
at week i (Table 1).   The value of AIn can be zero if, for 
example, a cool and wet week followed a warm and dry 
week. 
 
 

 
Table 1  Climate week dates and corn phenology 
weighting factors. 
 
 
2.2  Data 
 
 Daily precipitation and daily maximum 
temperature data were obtained from National Weather 
Service Cooperative Observer Program (COOP) 
stations disseminated by NCDC through NNDC-CDO 
(http://cdo.ncdc.noaa.gov/).  For a given district, all 
available stations’ daily data were sorted into the 
appropriate climate week and then averaged over the 
week and all stations.  To standardize a given district’s 
weekly precipitation and maximum temperature values 
with Equations 2.2 and 2.3, the 30-year (1971 to 2000) 
averages and standard deviations were used for the 
particular climate week.  The standardized weekly 
precipitation and weekly maximum temperature were 
then used in Equation 2.1 to compute AI for all districts 
and for climate weeks 11, which begins May 10, through 
week 27, which begins August 30 (Table 1).  After 
applying weighting, the index was summed over the 
season (hereafter seasonal AI or AI27).   

Climate 
Week (i) 

Begin 
Date 

Weighting 
Factor (ki) 

11 5/10 -0.5 
12 5/17 -0.5 
13 5/24 -0.5 
14 5/31 0.5 
15 6/7 0.5 
16 6/14 0.5 
17 6/21 1.0 
18 6/28 1.0 
19 7/5 1.0 
20 7/12 1.0 
21 7/19 2.2 
22 7/26 1.6 
23 8/2 1.3 
24 8/9 1.3 
25 8/16 1.3 
26 8/23 1.0 
27 8/30 0.75 
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 Corn yield data from the United States 
Department of Agriculture (USDA) National Agricultural 
Statistics Service  (http://www.nass.usda.gov:81/ipedb/) 
were used to establish a relationship with AIn.  The 
USDA data consisted of district bushels acre-1 for the 
period 1980 through 2000. Though it is likely that 
irrigation costs would have a strong tie to AI, it was 
assumed irrigated corn yield would have a minimal tie to 
AI because irrigation overcomes the negative effect of 
warmer and drier than usual weather.  Yields influenced 
by irrigation were avoided for districts in Kansas (KS), 
Nebraska (NE), South Dakota (SD), and North Dakota 
(ND) because non-irrigated yield data sets were 
available.  Yields influenced by irrigation could not be 
avoided for districts in Iowa (IA), Illinois (IL), Indiana 
(IN), Missouri (MO), Minnesota (MN), and Wisconsin 
(WI) because the usually moister conditions in the 
eastern states means irrigation is used less and 
therefore a distinction was not made in the yield data.  
The states for which there was a distinction between 
irrigated and non-irrigated (KS, NE, SD, and ND; 
hereafter referred to as the western states) were 
analyzed separately from the states for which no 
irrigation distinction was made in the data (IA, IL, IN, 
MN, MO, and WI; hereafter referred to as the eastern 
states).  
 Corn yields have generally been increasing 
with time, so raw yields should not be compared to AIn.  
For each district, linear regression was applied to the 
1980 to 1999 yields.  The residuals were then 
expressed as a percentage difference from the trend 
line.  This percentage deviation of yield from the 1980 to 
1999 linear trend will hereafter be referred to as YLD.  
Thus, the seasonal AI for each year, 1980 to 1999, had 
a corresponding YLD (except for SD from 1980 to 1983 
and for ND from 1980 to 1981, for which relevant yield 
data were not available). Eastern states' YLD were less 
variable than the YLD for the western states, and could 
be modeled.  Though western states' YLD was not 
modeled, both regions' AI27 and YLD were analyzed. 
 
3.  ANALYSIS 
 
  Figures 1a and 1b show YLD versus seasonal 
AI for the eastern states and the western states, 
respectively.  Data plots for the extraordinary year of 
1993 were included, but were not used for fitting models 
because, although the 1993 data plots fit with the other 
years' data plots, they were clearly more variable and 
would increase the uncertainty of predictions.  Even 
though flooding in 1993 did not affect the entire 10-state 
area, all 1993 data were left out for simplicity.  Average 
weather is less beneficial to a corn crop with increasing 
latitude (i.e., too cool), causing the relationship between 
seasonal AI and YLD to be less consistent.  The data for 
northern districts in MN and WI did not fit well with the 
curve in Figure 1a, but were kept as part of the data set 
in the interest of broader application of the AI method.  
However, it was thought that this AI method should not 
be used for the 3rd district of MN because of the 
inconsistent relationship of this district's YLD to AI27, so 
MN 3 was excluded.   

 

 
3.1  Late Season Relationship of YLD to AI and 
Application 
 
 It was clear from Figures 1a and 1b that highly 
negative seasonal AI is harmful to the corn crop 
because of the arid conditions.  In other words, YLD 
values become increasingly negative as arid conditions 
persist (increasingly negative AIn values).  Theoretically 
and similarly, YLD values could become increasingly 
negative if very cool and wet conditions persist 
(increasingly positive AIn values).  Though the latter 
happens less frequently, the scatter on the positive AI27 
side of the charts in Figures 1a and 1b support the idea.  
Average precipitation and average maximum 
temperatures (AIn of approximately zero), more often 
than not, produced YLD above trend. These situations 
suggest a physically realistic quadratic relationship 
between YLD and AI27.  
 Although better seasonal AI based yield 
models may exist, only a second order multiple 
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Figure 1  YLD versus seasonal AI from 1980 to 1999 
for districts in the eastern states (a) and in the western 
states (b).  Thin curved lines are the least squared fits 
of second order linear regression equations. 1993 was 
excluded from curve fitting, but plots are included as 
unfilled circles.  

(a) 

(b) 



regression model was explored in this study because of 
the physical basis for such a model.  An alternate 
approach is discussed in Section 5.  The general 
multiple linear regression model is given by Equation 
3.1 (Ott 1993). 
 
Ŷ 0 1 x1 2 x2 k xk                       (3.1)            
                       
To capture the quadratic relationship between YLD (the 
dependent variable) and AI27 (the independent variable), 
k = 2, x1 was substituted with AI27, and x2 was 
substituted with (AI27)2.  Coefficients associated with the 
curves in Figures 1a and 1b are shown in Table 2 along 
with the estimated variance of the residuals [ 2ˆ

= YLD  -  ( Ŷ | AI27 = ai27 ) ]. 
 
 
 
 
 

Figure 0
ˆ  1

ˆ  2
ˆ  2ˆ  

1a (Eastern) 5.338 0.825 -0.029 123.0 
1b (Western) 5.706 1.090 -0.034 506.2 

 
Table 2  Coefficient estimates for models plotted in 
Figure 1 and the estimated variance of the residuals.  
Evidence was sufficient to suggest coefficients were not 
equal to zero. 
 
 
 
The curve in Figure 1b is similar to the curve in Figure 
1a. The relationship between YLD and seasonal AI was 
much less consistent for the western states (Figure 1b) 
than it was for the eastern states (Figure 1a).  This is 
indicated by the large difference in 2ˆ  values in Table 2 
and the difference in the patterns of residual scatter (not 
shown). For the eastern districts, residual scatter for a 
given setting of AI27 AI) was assumed to be normally 
distributed with mean equal to zero and variance equal 
to 2ˆ . The variance 2ˆ  was assumed to be constant 
for all AI27 AI were assumed to be 
independent (Ott 1993) though there might be some 
spatial dependence (Anderson personal communication 
2002).  This information can be used to estimate the 
probability that a particular eastern district YLD will be 
between arbitrary ranges given an AI27 value.  The 
standard deviation for the western states’ residuals was 
about twice that of the eastern states’ residuals, and it 
was concluded that the uncertainty of Ŷ  for western 
districts was too high to be used with much confidence. 
 By assuming 2ˆ  is normally distributed, z-
scores (Ott 1993) could be used to estimate the 
probability that a particular YLD would be within the 
arbitrarily chosen range of ±5 units (a "unit" here is 1 % 
of the trended yield) of the Ŷ  value for a given setting of 

AI27.  The z-score for 5 units was 0.4508 (or 5 units is an 
estimated 0.4508 standard deviations ( ˆ  = 11.1) away 
from the mean).  The corresponding probability for a z-
score equal to ±0.4508 is 2*(0.177) or 0.354.  This 
means there is about a 35% chance that actual YLD will 
be within ±5 units of the value calculated (assuming Ŷ is 
the mean YLD for a given setting of AI27) from the 
eastern states' model (assembled from the appropriate 
coefficients in Table 2). Compared to modeled YLD, 
approximately a third of actual YLD values will be over 5 
units from the modeled YLD, approximately a third of 
actual YLD values will be under 5 units from the 
modeled YLD, and approximately a third of actual YLD 
values will be within 5 units of the modeled YLD.   
 The late season application becomes invalid if 
utilized too early.  However, even if an evaluation could 
only be made at the end of week 27 (September 5), it 
would still be beneficial because the crop would stand 
about 2-4 weeks before harvest would begin, which is 
about September 22 (http://www.lgseeds.com/).  If the 
modeled YLD is accurate enough, this lead-time could 
be enough to be quite serviceable.  Fortunately, 
because of the importance of moisture during silking, it 
is quite possible to make valid computations a couple of 
months before season's end of modeled YLD based on 
the value of AIn.  Therefore, a weekly AIn assessment 
has value even if the weather varies from average 
because an AIn tending upward (downward) would 
indicate an above (below) trend YLD and/or continued 
gain (loss).  
 
3.2  Early Season Relationship of YLD to AI and 
Application 
 
 At the beginning of the season, AIn is set to 
zero.  The start from zero, fractional weighting, and 
tendency for AI components to be near average usually 
keep the first weeks' AIn values very small.  As a result, 
the season end relationships seen in Figure 1 are not 
useful early in the season.  Until weighting is heavier 
and AIn has had a chance to accumulate, such that one 
can anticipate using the season-end relationship (a 
week or two before silking week, assumed to be week 
21), Table 3 can be used to make AIn-based evaluations 
of the crop's potential. Table 3 present the 1980 to 1999 
eastern states' percentage of cases with above trend 
YLD for particular ranges of AIn. Evidence to suggest 
the percentages on the tables are different than the 
unconditional chance of being above trend (62.5%) was 
determined with Equation 3.2, which is the normal 
approximation to the binomial test statistic (Ott 1993). 
 

 
where  ˆ  is  a  particular   percentage  from   Table 3,        
π0 is the unconditional percentage of being above trend 
( = 0.625 ), and ˆ = [π0(1-π0)n-1] 0.5 where n is the 
total cases associated with the particular percentage. 

 

ˆ

ˆ
z 0-
= (3.2) 



 
 
Table 3   For particular AI values, the percentage of 
eastern states’ districts with positive YLD (1980 to 1999) 
at week 13 (2 months before silking), at week 17 (1 
month before silking), at week 21 (about silking time), 
and at week 25 (about 1 month after silking).  ‡ (†) 
indicates percentage is significantly (at the 0.05 
probability level) higher (lower) than the unconditional 
percentage of cases above trend ( 0 = 62.5%). 
 
 
 
 
If  | z | > z  ( z
that a particular percentage is the same as the 

0 ) was rejected and 
the particular percentage was said to be higher  than the 
unconditional percentage if z was greater than zero (‡) 
and lower than the unconditional percentage if z was 
less than zero (†). 
 After the third calculation of AI for the season 
for all years (week 13: about 2 months before silking), 
the range for AI13 was quite small (Table 3).  However, 
some value can be derived from AI13.  If AI13 is between 
0 and +2, there is a better than usual chance to be 
above trend (69.0%).  If AI13 went above +2 and was too 
warm and dry (recall raw aridity was negatively 
weighted the first three weeks) early in the growing 

season, the associated probability of an above trend 
YLD (51.5%) was significantly lower than usual.  At 
week 17 (about 1 month before silking), the range for 
AI17 was still somewhat narrow, but again certain AI 
values provide some meaning (Table 3).  When AI17 
was between 0 and 4, there was a strong likelihood 
(about 70%) of positive YLD and when AI17 was below -
2 (except for a few cases with AI17 less than -6), there is 
a likelihood (roughly a 60% chance) of negative YLD.   
 Although the range for AI21 and AI25 is large 
enough for the season end YLD-AI27 relationship to be 
useful, early season methodology, as done with week 
13 and week 17, can continue to be helpful.  As AI21 and 
AI25 (Table 3) went below -8 and -10 respectively, more 
districts had below trend YLD than above trend YLD.  
Conversely, as AI21 and AI25 went above 0 and +2 
respectively, a large percentage of districts achieved 
positive YLD. 
 
 
4.  TESTING LATE SEASON MODEL APPLICATION 
ON THE 2000 AND 2001 GROWING SEASONS 
 
 Based on the analysis and model equation for 
the eastern states, YLD were predicted for 2000 using 
the 2000 seasonal AI values.  Figure 2 shows the 2000 
seasonal AI, the modeled YLD for the eastern districts, 
and the actual YLD.  The highly negative actual YLD in 
the western districts generally correspond to the white 
and light gray areas (where seasonal AI was less than 
zero) while most of the darker gray districts (where 
seasonal AI was greater than zero) had positive YLD.  
Good agreement between modeled and actual YLD 
occurred for the eastern two thirds of IA, central IN, and 
central IL. Modeled YLD for districts IA 1 and IA 4 were 
noticeably lower than the rest of the IA districts' 
estimates, but were still predicted to be above trend 
when actually the YLD were below trend.  The northeast 
four districts of IA had reasonably consistent 
overestimation.  Modeled YLD values for the southern 
tier of IA districts were about 10% above trend. For 
southwest IA, 10% above trend was a substantial 
overestimate, but modeled YLD for the other two 
districts of the southern tier had fair agreement with 
actual YLD.  The model predicted YLD of greater than 
7.5% above trend for all of WI. It was suspected that 
conditions were too cool and wet in WI for YLD to be 
substantially above trend, so predicted YLD were 
overestimates.  Similar overestimates occurred in 
northeast IL and northern IN, again possibly from being 
too cool and wet.  MN had both overestimates and 
underestimates because actual YLD increased from 
east to west, but AI27 decreased from east to west.  
Actual YLD for southern IL and southern IN were very 
large.  Modeled YLD has a maximum because of the 
quadratic nature of the model.  Seasonal AI for southern 
IL and southern IN were in a range where modeled YLD 
were near the maximum.  Therefore, it wasn't possible 
for modeled YLD to be near the actual YLD.  Out of 50 
eastern districts, 21 had modeled YLD come within ±5 
units of the actual YLD. 

 % Cases above Trend ( ˆ ) 
AI cw13 cw17 cw21 cw25 

-32 to -30 
-30 to -28 
-28 to -26 
-26 to -24 
-24 to -22 
-22 to -20 
-20 to -18 
-18 to -16 
-16 to -14 
-14 to -12 

AI < -12 

-12 to -10 

   

18.2† 
-10 to -8   25.5† 49.2† 
-8 to -6  66.7 38.8† 64.8 
-6 to -4 55.0 35.0† 54.8 60.0 
-4 to -2 63.1 48.6† 66.7 70.3 
-2 to 0 58.3 64.5 65.4 68.1 
0 to 2 69.0‡ 73.1‡ 71.1‡ 67.9 
2 to 4 51.5† 70.2 78.5‡ 85.5‡ 
4 to 6  75.0 87.1‡ 78.6‡ 
6 to 8  66.7 79.2‡ 83.3‡ 

8 to 10 84.3‡ 
10 to 12 81.1‡ 
12 to 14 77.1 
14 to 16 
16 to 18 
18 to 20 
20 to 22 
22 to 24 

  AI > 8 

AI > 14 



 The same methodology that was used to test 
2000 was applied to the 2001 season.  Figure 3 again 
shows the seasonal AI, the modeled YLD for the 
eastern districts, and the actual YLD, but for 2001.  
According to seasonal AI, 2001 was generally warmer 
and drier than 2000. Again, the highly negative actual 
YLD generally correspond to the white and light gray 
areas (where seasonal AI was less than zero) while 
most of the darker gray districts (where seasonal AI was 
greater than zero) had positive YLD.  There were 
several districts for which agreement was good between 
the modeled YLD and the actual YLD.  Of these, many 
were grouped.  One group included much of WI and 
extended into southeast MN and north central IA.  
Another group was northern IN and northeast IL.  A pair 
of good estimates was hindcast for districts IA 7 and IA 
8 with the model.   
 Three regions were areas of substantial 
underestimation.  The first covered northwest WI and 
extended into central and northwest MN.  The second 
area was composed of districts in eastern IA, northwest 
IL, and the southeast WI district (WI 9).  Lastly, many of 
the southern IL and southern IN districts had 
underestimated YLD and were similar to the pattern 

seen for southern IL and southern IN for the 2000 
application  The large 2001 model error for the districts 
in southern IL and southern IN is not explained by the 
modeled YLD maximum because most of the seasonal 
AI values for these districts were not really in that range 
where the peak modeled YLD occurs.  These districts 
just did really well under conditions slightly less cool and 
wet than the 2000 growing season. Out of 50 eastern 
districts, 24 had modeled YLD come within ±5 units of 
the actual YLD. 
 A plausible rule of thumb for the AI-YLD 
relationship is a one-to-one proportion, even for the 
western states.  Sign agreement between seasonal AI 
and YLD was much more common than seasonal AI 
and YLD having opposite signs.  In Figure 1a (1b), for 
sign agreement, there are 385 (236) plots in the upper 
right quadrant and 267 (186) in the lower left quadrant 
while the opposite sign quadrants, the upper left and the 
lower right, had only 207 (103) and 88 (84) plots 
respectively.  Thus, mapping the latest AIn for all 
districts would be useful because AIn less than zero 
would signify which areas and their extent have the 
greatest chance of being below trend.   
 

 
 

Figure 2           District seasonal AI (shaded at intervals of 10 units), actual YLD (small text), and modeled YLD (large 
bold text) for 2000. 
 
 



 
 
Figure 3           District seasonal AI (shaded at intervals of 10 units), actual YLD (small text), and modeled YLD (large 
bold text) for 2001. 
 
 
5   DISCUSSION 
 
5.1  Considering the Definition of AI 
 
 At this developmental stage of the AI method, 
the definition of AI was kept simple.  The definition of AI 
used here was a special case of an expanded definition 
(Equation 5.1) that accounts for different contributions to 
"aridity" from precipitation and temperature at different 
times during the season. 

                     AIn = ∑
=

n

i
ik

11
 (aiPʹ′i  −  biTʹ′i)                     (5.1)   

                                             
On a monthly scale, precipitation in July is a bigger 
factor than temperature for YLD, but contributes less to 
YLD than temperature in August (Thompson 1986).  
Differing contributions to AI from precipitation and 
temperature on a weekly scale were beyond the scope 
of this study.  When it was stated that precipitation and 
temperature were equal contributors to the weekly AI, it 
was assumed   ai = bi = 1 for all weeks (i).   

The corn phenology weighting factor (ki) was also 
rigid.  All weighting was applied with respect to having 
main silking occurring during climate week 21 and all 
weighting was applied to all districts equally.  In IA, 

there is a good chance that silking will occur in or near 
week 21, but silking may happen at different times in 
other locations.  To adjust weighting with each weekly 
processing of AI as conditions warrant, either timely 
observations of silking dates would need to be obtained 
or crop stage would need to be estimated with growing 
degree days. To improve the AI method, it is 
recommended that further work be done to find optimal 
corn phenology weighting and to incorporate it with the 
optimal contribution factors of precipitation and 
temperature. 

Aside from weighting factors, there are other 
fundamental issues with the AI definition.  One issue is 
the possibility of certain combinations of extreme 
weather weeks causing AIn to be near neutral at any 
particular time.  The extreme weather could quite likely 
result in a fairly large below trend YLD, but if opposite 
weather occurred for enough weeks, the resulting AIn 
value would not indicate the drastic negative YLD.  For 
example, if July was arid, and August was proportionally 
cool and wet, then AIn would be near zero, but the crop 
would have performed poorly because of the July 
conditions.  The method, as it stands now, allows AIn to 
move back toward zero even though irreversible yield 
loss may have occurred.  In other words, the crop’s 



ability to recover from aridity or flood is quite limited, but 
the AI method does not account for this limitation.   

Another consideration in regard to the defining 
equation of AI is the possibility of AI being near zero 
when a week's weather is wet and warm or cool and 
dry.  It was assumed that these conditions would have 
approximately the same effects as average conditions.  
“Warm” would indicate higher transpiration, but “wet” 
would mean precipitation would be sufficient to sustain 
the higher water usage.  Similarly, “cool” would indicate 
lower transpiration, so “no rain” would not be harmful.   
Finally, normalizing a precipitation distribution that is not 
normal does not promote symmetry between the 
possible positive and negative values of the Pʹ′ term.  
For example, a positive Pʹ′ value can be very high, but a 
negative Pʹ′ value can only go so low because a district’s 
average weekly precipitation cannot go below zero.  
Instead of normalizing precipitation to calculate Pʹ′, 
perhaps the Pʹ′ term would be more consistent with 
some sort of percentile scheme.   
 
5.2  A Possible Alternate Model 
    
 Flooding had a large influence on the shape of 
the parabolic model.  Too much water is harmful to the 
crop, so YLD could be largely negative when AIn was 
largely positive.  If a distinction were made between 
flooding and no flooding when AIn was high, such that 
the model excluded flooding situations, it would have a 
smaller tendency to underestimate YLD.  Although 
underestimation is inherent near the peak of the 
parabolic model, excluding flood situations would shift 
the peak such that the model would better represent 
crops that were not flooded.  From a physical point of 
view, excluding flood situations would nullify the 
quadratic relationship of YLD to seasonal AI.  If many of 
the plots from the lower right quadrant in Figure 1a were 
justifiably eliminated, the relationship of YLD to AI27 
would look quite linear.  A logical next step then is to 
account for flooding and use a linear regression model 
or combinations of linear regression models.  A single 
order linear model would not have the problem of 
underestimating YLD because of having some possible 
maximum value, as did the quadratic model used in this 
study. Using a linear model for the 2000 and 2001 
seasons would likely bring more of the plots on the right 
side of the chart inside the ±5 unit interval.     
  
5.3  Other Error Sources 
 
 There are other possible sources of error.  For 
high aridity, irrigated corn may do well and keep the 
total yield relatively higher even though AIn is quite low.  
Thus, the total yield in the eastern states may have 
contributions from irrigated corn, which may have 
influenced the yield deviation used here for the eastern 
states.  Other issues besides irrigation may be factors.  
Meyer et al. (1993a) acknowledge soil quality, hybrid 
type, and damaging elements, such as insects, disease, 
hail, and wind, impact yield and may be sources of 
error.  Thompson (1986) studied the effects of climate 
change on the upward trend in corn yield, and thus had 

to separate the influence of weather from the influence 
of greater fertilization, improved genetics, improved pest 
control, and improved management.   
 
6.  CONCLUSIONS 
 
6.1  Summary 
 
 For a growing season, a method to judge 
whether a week's average maximum temperature and 
average precipitation were helpful or harmful to the 
season-end corn yield was presented. Hindcasting was 
done on the 2000 and 2001 corn growing seasons with 
mixed results.  Of the modeled YLD for 2000 and 2001, 
about 45% of the predictions for the districts came 
within ±5 units of the actual YLD.  For most weeks, the 
chance of an eastern states’ district having positive YLD 
diminished as AIn went below certain values and was 
significantly better than the unconditional chance when 
AIn went above certain values.  Operationally, a model 
that predicts yield to ±10 % is considered acceptable 
and to  ±5 % is excellent.  On this basis, this model is of 
value because it is reasonably accurate and is simple to 
implement on a week-by-week basis.  When this (AI) 
model shows cause for concern, a user may desire to 
invest effort in a more detailed assessment. 
 During the 2-year evaluation (2000-2001), the 
model accuracy for the period improved as the season 
progressed.  On June 6, the model correctly classified 
47 percent of the crop-reporting districts in the Corn 
Belt.  On July 4, 60 percent were correctly classified.  
After August 1, the accuracy of classification was 75 
percent.  Because both years had yields very near the 
long-term trend, this is considered a very good result. 
The AI model also performed well under worst-case 
considerations.  That is, it did not predict a substantial 
number of above-trend yields that proved to be under 
the trend. 
 
6.2  Discussion of Making the AI System Operational 
 
 For upcoming growing seasons, two main 
items should allow for meaningful dissemination of AI 
information (primarily via the World Wide Web).  Maps 
of district AIn will display the spatial extent of warmer 
and drier or cooler and wetter than average weather.  
The other important item will be a sequential sample for 
each district.  Because there are 85 districts in the 
Midwest, it would be awkward to produce 85 time series 
charts each week.  An alternative would be to set up the 
map so each district has a link to an automatically 
generated chart.   

Examples from the end of the 2000 and 2001 
season are available along with an operational 2002 
product (see URL associated with this paper). As in 
these examples, the AI product for upcoming seasons 
could include appropriate charts and tables, which 
would allow users to make decisions based on their own 
assessment of the historical relationship. 
 
 
 



6.3  Future Work 
 
 The AI method has potential for improvement.  
First, the raw weekly AI could be refined by dealing with 
the Pʹ′ term differently and by considering how much 
each term is contributing at what points in the growing 
season. The next adjustment would be a more realistic 
crop phenology weighting scheme.  After these steps, 
the seasonal AI should again be plotted against YLD, 
but perhaps without YLD influenced by flooding, such 
that a linear model might be appropriate.  Even if the 
relationship does not prove to be more consistent after 
the changes, AI results should still be compared to 
results from previous studies such as the ones authored 
by Shaw (1983), Thompson (1986), Harouna and 
Carlson (1994), and Meyer et al. (1993), which were 
discussed in Section 1.  Such comparisons would help 
better determine the value of the AI methodology.           
 The AI methodology could include an 
incorporation of operational long-range weather 
forecasts to project the summer's possible AI 
tendencies.  A shorter term AI forecast, especially the 
precipitation component, might be made based on the 
trend of the low-level flow from the Gulf of Mexico.  If the 
AI method proves to be successful, it would be natural 
to extend it to soybeans and other crops.  It could also 
be extended beyond the Midwest.  Eventually 
extrapolation from the 1980 to 1999 yield trend would 
need to be reevaluated because the upward trend of 
yield due to technology will likely level off.  Averages 
used to normalize temperature may also have to be 
reevaluated to match the current climate with the 
appropriate past climate. 
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